Generalized Adiabatic Product Expansion: A nonperturbative method of solving time-dependent Schrödinger equation
نویسنده
چکیده
We outline a method based on successive canonical transformations which yields a product expansion for the evolution operator of a general (possibly non-Hermitian) Hamiltonian. For a class of such Hamiltonians this expansion involves a finite number of terms, and our method gives the exact solution of the corresponding timedependent Schrödinger equation. We apply this method to study the dynamics of a general nondegenerate two-level quantum system, a time-dependent classical harmonic oscillator, and a degenerate system consisting of a spin 1 particle interacting with a time-dependent electric field ~ E(t) through the Stark Hamiltonian H = λ( ~ J · ~ E)2.
منابع مشابه
The smoothed particle hydrodynamics method for solving generalized variable coefficient Schrodinger equation and Schrodinger-Boussinesq system
A meshless numerical technique is proposed for solving the generalized variable coefficient Schrodinger equation and Schrodinger-Boussinesq system with electromagnetic fields. The employed meshless technique is based on a generalized smoothed particle hydrodynamics (SPH) approach. The spatial direction has been discretized with the generalized SPH technique. Thus, we obtain a system of ordinary...
متن کاملVariational Sturmian Approximation: A nonperturbative method of solving time-independent Schrödinger equation
A variationally improved Sturmian approximation for solving time-independent Schrödinger equation is developed. This approximation is used to obtain the energy levels of a quartic anharmonic oscillator, a quartic potential, and a Gaussian potential. The results are compared with those of the perturbation theory, the WKB approximation, and the accurate numerical values.
متن کاملVariational homotopy perturbation method for solving the generalized time-space fractional Schrödinger equation
We suggest and analyze a technique by combining the variational iteration method and the homotopy perturbation method. This method is called the variational homotopy perturbation method. We use this method for solving Generalized Time-space Fractional Schrödinger equation. The fractional derivative is described in Caputo sense. The proposed scheme finds the solution without any discritization, ...
متن کاملLinear-least-squares fitting method for the solution of the time-dependent Schrödinger equation: Applications to atoms in intense laser fields
An alternative theoretical approach for solving the time-dependent Schrödinger equation for atoms in an intense laser field is presented. In this method the time-dependent wave function is expanded in a basis set but the expansion coefficients are determined by linear-least-squares fitting of the wave function on discrete mesh points in configuration space, thus avoiding the need of evaluating ...
متن کاملFinite integration method with RBFs for solving time-fractional convection-diffusion equation with variable coefficients
In this paper, a modification of finite integration method (FIM) is combined with the radial basis function (RBF) method to solve a time-fractional convection-diffusion equation with variable coefficients. The FIM transforms partial differential equations into integral equations and this creates some constants of integration. Unlike the usual FIM, the proposed method computes constants of integ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999